Курсы Artificial Intelligence (AI)

Курсы Artificial Intelligence (AI)

Местные учебные курсы, посвященные искусственному интеллекту (AI), демонстрируют практическую практику практического применения AI решений для решения реальных проблем Обучение AI доступно как «живое обучение на месте» или «дистанционное живое обучение» На месте живое обучение может проводиться локально в помещениях клиента в Russia или в корпоративных учебных центрах NobleProg Russia , Дистанционное обучение в реальном времени осуществляется с помощью интерактивного удаленного рабочего стола NobleProg Ваш местный провайдер обучения.

Machine Translated

Отзывы

★★★★★
★★★★★

Artificial Intelligence (AI) Содержание курса

Название курса
Продолжительность
Обзор
Название курса
Продолжительность
Обзор
14 часов
Обзор
Этот курс охватывает ИИ (подчеркивание машинного обучения и глубокого обучения) в автомобильной промышленности Это помогает определить, какая технология может (потенциально) использоваться во множестве ситуаций в автомобиле: от простой автоматизации, распознавания образов до автономного принятия решений ,.
14 часов
Обзор
OpenNN - это библиотека классов openource, написанная на C ++, которая реализует нейронные сети, для использования в машинных процессах В этом курсе мы рассмотрим принципы нейронных сетей и используем OpenNN для реализации примера приложения Аудитория Разработчики программного обеспечения и программисты, желающие создавать приложения Deep Learning Формат курса Лекция и обсуждение в сочетании с упражнениями handson ,.
14 часов
Обзор
Эта учебная сессия, основанная на классе, будет содержать презентации и компьютерные примеры и упражнения для изучения конкретных ситуаций с соответствующими нейронными и глубокими сетевыми библиотеками ,.
21 часов
Обзор
Курс предназначен для тех, кто хотел бы узнать альтернативную программу для коммерческого пакета MATLAB Обучение threeday предоставляет исчерпывающую информацию о перемещении по окружающей среде и выполнении пакета OCTAVE для анализа данных и инженерных расчетов Получатели обучения - это новички, но также те, кто знает программу и хотят систематизировать свои знания и улучшить свои навыки Знание других языков программирования не требуется, но это значительно облегчит приобретение знаний учениками Курс покажет вам, как использовать программу на многих практических примерах ,.
28 часов
Обзор
OpenCV (Open Source Computer Vision Library: http://opencvorg) - библиотека с открытым исходным кодом BSDlicensed, которая включает в себя несколько сотен алгоритмов компьютерного зрения Аудитория Этот курс направлен на инженеров и архитекторов, стремящихся использовать OpenCV для проектов компьютерного видения ,.
14 часов
Обзор
OpenCV is a library of programming functions for deciphering images with computer algorithms. OpenCV 4 is the latest OpenCV release and it provides optimized modularity, updated algorithms, and more. With OpenCV 4 and Python, users will be able to view, load, and classify images and videos for advanced image recognition.

This instructor-led, live training (online or onsite) is aimed at software engineers who wish to program in Python with OpenCV 4 for deep learning.

By the end of this training, participants will be able to:

- View, load, and classify images and videos using OpenCV 4.
- Implement deep learning in OpenCV 4 with TensorFlow and Keras.
- Run deep learning models and generate impactful reports from images and videos.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
14 часов
Обзор
OpenFace - это основанный на Python и Torch open-source, программное обеспечение для распознавания лиц в реальном времени на основе исследования FaceNet компании Google В этом обученном, живом обучении участники узнают, как использовать компоненты OpenFace для создания и развертывания образца приложения распознавания лиц К концу этого тренинга участники смогут: Работа с компонентами OpenFace, включая dlib, OpenVC, Torch и nn4 для реализации распознавания лиц, выравнивания и преобразования Применяйте OpenFace к приложениям реального мира, таким как наблюдение, проверка подлинности, виртуальная реальность, игры и идентификация постоянных клиентов и т Д Аудитория Разработчики Ученые данных Формат курса Часть лекций, обсуждение частей, упражнения и тяжелая практика handson ,.
14 часов
Обзор
Библиотека Apache OpenNLP представляет собой набор инструментальных средств для машинного обучения для обработки текста естественного языка Он поддерживает наиболее распространенные задачи NLP, такие как обнаружение языка, токенизация, сегментация предложения, маркировка partofspeech, извлечение именованного объекта, разбиение на разделы, разбор и разрешение ядра В этом обученном, живом обучении участники узнают, как создавать модели для обработки текстовых данных с использованием OpenNLP В качестве основы для лабораторных упражнений будут использоваться примеры учебных данных, а также настроенные наборы данных К концу этого тренинга участники смогут: Установка и настройка OpenNLP Загрузите существующие модели, а также создайте свои собственные Обучить модели различным наборам данных выборки Интеграция OpenNLP с существующими приложениями Java Аудитория Разработчики Ученые данных Формат курса Часть лекций, обсуждение частей, упражнения и тяжелая практика handson ,.
7 часов
Обзор
OpenNMT - полнофункциональная, с открытым исходным кодом (MIT) система нейронного перевода, которая использует математический инструментарий Torch В этом упражнении участники узнают, как настроить и использовать OpenNMT для перевода различных наборов данных выборки Курс начинается с обзора нейронных сетей применительно к машинным переводам Участники будут проводить живые упражнения на протяжении всего курса, чтобы продемонстрировать свое понимание понятий и получить отзывы от инструктора К концу этого обучения участники получат знания и практику, необходимые для реализации живого решения OpenNMT Исходные и целевые языковые образцы будут заранее согласованы с требованиями аудитории Аудитория Специалисты по локализации с технической базой Глобальные менеджеры контента Инженеры по локализации Разработчики программного обеспечения, отвечающие за внедрение глобальных решений для контента Формат курса Лекция по части, часть обсуждения, тяжелая практика handson ,.
21 часов
Обзор
Этот курс использует практический подход к обучению OptaPlanner Он предоставляет участникам инструменты, необходимые для выполнения основных функций этого инструмента ,.
21 часов
Обзор
По оценкам, неструктурированные данные составляют более 90 процентов всех данных, большая часть которых представлена ​​в виде текста Сообщения в блогах, твиты, социальные сети и другие цифровые публикации постоянно добавляют к этому растущему объему данных Этот курс сосредотачивается на извлечении понимания и смысла из этих данных Используя библиотеки R Language и Natural Language Processing (NLP), мы объединяем концепции и методы из информатики, искусственного интеллекта и вычислительной лингвистики для алгоритмического понимания смысла текстовых данных Образцы данных доступны на разных языках по требованиям заказчика К концу этого обучения участники смогут готовить наборы данных (большие и малые) из разрозненных источников, а затем применять правильные алгоритмы для анализа и отчета о его значимости Аудитория Лингвисты и программисты Формат курса Часть лекций, обсуждение частей, тяжелая практика handson, случайные тесты для оценки понимания ,.
21 часов
Обзор
PaddlePaddle (PArallel Distributed Deep LEarning) - это масштабируемая платформа глубокого обучения, разработанная Baidu В этом обученном, живом обучении участники узнают, как использовать PaddlePaddle, чтобы обеспечить глубокое обучение в своих продуктах и ​​приложениях К концу этого тренинга участники смогут: Настройка и настройка PaddlePaddle Настройте сверточную нейронную сеть (CNN) для распознавания изображений и обнаружения объектов Настройте повторяющуюся нейронную сеть (RNN) для анализа настроений Настройте глубокое обучение в системах рекомендаций, чтобы помочь пользователям найти ответы Прогнозировать рейтинг кликов (CTR), классифицировать наборы изображений большого масштаба, выполнять оптическое распознавание символов (OCR), поиск рангов, обнаруживать компьютерные вирусы и внедрять систему рекомендаций Аудитория Разработчики Ученые данных Формат курса Часть лекций, обсуждение частей, упражнения и тяжелая практика handson ,.
14 часов
Обзор
Pattern Matching - это метод, используемый для определения заданных шаблонов в изображении Его можно использовать для определения наличия определенных характеристик в захваченном изображении, например ожидаемой метки на дефектном продукте в заводской строке или указанных размерах компонента Он отличается от «Распознавания образов» (который распознает общие шаблоны, основанные на более крупных наборах связанных образцов) тем, что он конкретно диктует то, что мы ищем, а затем говорит нам, существует ли ожидаемый шаблон или нет Аудитория Инженеры и разработчики, стремящиеся разработать приложения для машинного зрения Инженеры-технолоджи, техники и менеджеры Формат курса В этом курсе представлены подходы, технологии и алгоритмы, используемые в области сопоставления шаблонов, как это применимо к Machine Vision ,.
21 часов
Обзор
PredictionIO - это сервер с открытым исходным кодом для машинного обучения, созданный на основе стека с открытым исходным кодом stateoftheart Аудитория Этот курс предназначен для разработчиков и ученых, которые хотят создавать интеллектуальные механизмы для любой задачи машинного обучения ,.
14 часов
Обзор
R - свободно распространяемый язык программирования для статистических вычислений, анализа данных и графики R используется все большим числом менеджеров и аналитиков данных внутри корпораций и научных кругов R имеет широкий спектр пакетов для интеллектуального анализа данных ,.
14 часов
Обзор
Pandas is a Python library for data manipulation and analysis. Using Pandas, users can perform predictive analysis through machine learning.

This instructor-led, live training (online or onsite) is aimed at data scientists who wish to use Pandas to preform predictive analysis with machine learning.

By the end of this training, participants will be able to:

- Perform data wrangling in Python.
- Conduct ETL operations for machine learning.
- Create data visualizations with Pandas

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
21 часов
Обзор
В этом обученном, живом обучении участники будут изучать наиболее актуальные и передовые методы машинного обучения в Python, поскольку они создают серию демонстрационных приложений, включающих изображения, музыку, текст и финансовые данные К концу этого тренинга участники смогут: Реализация алгоритмов машинного обучения и методов решения сложных задач Применять глубокое обучение и полунаблюдение в приложениях, включающих изображения, музыку, текст и финансовые данные Push Python алгоритмы с максимальным потенциалом Используйте библиотеки и пакеты, такие как NumPy и Theano Аудитория Разработчики Аналитики Ученые данных Формат курса Часть лекций, обсуждение частей, упражнения и тяжелая практика handson ,.
14 часов
Обзор
Computer Vision - это поле, которое включает в себя автоматическое извлечение, анализ и понимание полезной информации с цифровых носителей Python - высокоуровневый язык программирования, известный своим четким синтаксисом и удобочитаемостью кода В этом обученном, живом обучении участники изучат основы Computer Vision, когда они пройдут через создание простого приложения Computer Vision с использованием Python К концу этого тренинга участники смогут: Понимание основ компьютерного видения Использование Python для реализации задач Computer Vision Создавайте собственные системы обнаружения лица, объекта и движения Аудитория Программисты Python заинтересованы в Computer Vision Формат курса Часть лекций, обсуждение частей, упражнения и тяжелая практика handson ,.
21 часов
Обзор
Эта учебная сессия, основанная на классе, будет изучать методы НЛП в сочетании с применением ИИ и робототехники в бизнесе Делегаты возьмут на себя компьютерные примеры и упражнения для изучения конкретных ситуаций с использованием Python ,.
21 часов
Обзор
Этот курс был разработан для людей, заинтересованных в извлечении смысла из письменного текста на английском языке, хотя знания могут быть применены и к другим языкам В этом курсе рассказывается, как использовать текст, написанный людьми, например, сообщения в блогах, твиты и т Д Например, аналитик может настроить алгоритм, который автоматически достигнет вывода, основанного на обширном источнике данных ,.
35 часов
Обзор
По завершении обучения делегаты, как ожидается, будут достаточно оснащены основными концепциями python и должны иметь возможность в достаточной степени использовать NLTK для реализации большей части операций NLP и ML Обучение направлено на предоставление не только знаний исполнителей, но также логических и оперативных знаний о технологии в нем ,.
14 часов
Обзор
Эта обучающая сессия, основанная на классе, будет изучать методы машинного обучения с использованием компьютерных примеров и упражнений по изучению конкретных ситуаций с использованием соответствующей программы ,.
28 часов
Обзор
Машиноведение - это отрасль Искусственного интеллекта, в которой компьютеры имеют возможность учиться, не будучи явно запрограммированными R - популярный язык программирования в финансовой индустрии Он используется в финансовых приложениях, начиная от основных программ торговли и заканчивая системами управления рисками В этом обученном, живом обучении участники узнают, как применять методы машинного обучения и инструменты для решения проблем реального мира в финансовой отрасли R будет использоваться в качестве языка программирования Участники сначала изучают ключевые принципы, затем внедряют свои знания на практике, создавая свои собственные модели машинного обучения и используя их для выполнения ряда командных проектов К концу этого тренинга участники смогут: Понимать фундаментальные концепции машинного обучения Изучение приложений и использование машинного обучения в области финансов Разработка собственной алгоритмической торговой стратегии с использованием машинного обучения с помощью R Аудитория Разработчики Ученые данных Формат курса Часть лекций, обсуждение частей, упражнения и тяжелая практика handson ,.
21 часов
Обзор
MLflow is an open source platform for streamlining and managing the machine learning lifecycle. It supports any ML (machine learning) library, algorithm, deployment tool or language. Simply add MLflow to your existing ML code to share the code across any ML library being used within your organization.

This instructor-led, live training (online or onsite) is aimed at data scientists who wish to go beyond building ML models and optimize the ML model creation, tracking, and deployment process.

By the end of this training, participants will be able to:

- Install and configure MLflow and related ML libraries and frameworks.
- Appreciate the importance of trackability, reproducability and deployability of an ML model
- Deploy ML models to different public clouds, platforms, or on-premise servers.
- Scale the ML deployment process to accommodate multiple users collaborating on a project.
- Set up a central registry to experiment with, reproduce, and deploy ML models.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
14 часов
Обзор
Целью этого курса является предоставление базового знания в применении методов машинного обучения на практике Благодаря использованию языка программирования Scala и его различных библиотек и на основе множества практических примеров, этот курс учит, как использовать наиболее важные строительные блоки машинного обучения, как принимать решения моделирования данных, интерпретировать результаты алгоритмов и подтвердите результаты Наша цель - дать вам навыки, чтобы понять и использовать самые фундаментальные инструменты из инструментария машинного обучения уверенно и избежать общих ошибок приложений Data Sciences ,.
14 часов
Обзор
Целью этого курса является предоставление базового знания в применении методов машинного обучения на практике Благодаря использованию языка программирования Python и его различных библиотек и на основе множества практических примеров, этот курс учит, как использовать наиболее важные строительные блоки машинного обучения, как принимать решения моделирования данных, интерпретировать результаты алгоритмов и подтвердите результаты Наша цель - дать вам навыки, чтобы понять и использовать самые фундаментальные инструменты из инструментария машинного обучения уверенно и избежать общих ошибок приложений Data Sciences ,.
14 часов
Обзор
Целью этого курса является предоставление базового знания в применении методов машинного обучения на практике Благодаря использованию платформы программирования R и ее различных библиотек и на основе множества практических примеров этот курс учит, как использовать наиболее важные строительные блоки машинного обучения, как принимать решения моделирования данных, интерпретировать результаты алгоритмов и подтвердите результаты Наша цель - дать вам навыки, чтобы понять и использовать самые фундаментальные инструменты из инструментария машинного обучения уверенно и избежать общих ошибок приложений Data Sciences ,.
7 часов
Обзор
Этот учебный курс предназначен для людей, которые хотели бы применять базовые методы машинного обучения в практических приложениях Аудитория Ученые данных и статистик, которые знакомы с машинным обучением и знают, как программировать R Основное внимание в этом курсе уделяется практическим аспектам подготовки данных / моделей, их выполнения, постходового анализа и визуализации Цель состоит в том, чтобы дать практическое введение в машинное обучение участникам, заинтересованным в применении методов на работе Секторные примеры используются, чтобы сделать обучение релевантным для аудитории ,.
14 часов
Обзор
В этом обученном, живом обучении участники узнают, как использовать стек технологии iOS Machine Learning (ML), поскольку они выполняют шаг по созданию и развертыванию мобильного приложения iOS К концу этого тренинга участники смогут: Создание мобильного приложения, способного обрабатывать изображения, текстовый анализ и распознавание речи Доступ к предварительно подготовленным моделям ML для интеграции в приложения iOS Создание пользовательской модели ML Добавить поддержку Siri Voice для приложений iOS Понимать и использовать такие рамки, как coreML, Vision, CoreGraphics и GamePlayKit Используйте языки и инструменты, такие как Python, Keras, Caffee, Tensorflow, scikit learn, libsvm, Anaconda и Spyder Аудитория Разработчики Формат курса Часть лекций, обсуждение частей, упражнения и тяжелая практика handson ,.
35 часов
Обзор
MLOps is a set of tools and methodologies for combining Machine Learning and DevOps practices. The goal of MLOps is to automate and optimize the deployment and maintenance of ML systems in production.

This instructor-led, live training (online or onsite) is aimed at engineers who wish to evaluate the approaches and tools available today to make an intelligent decision on the path forward in adopting MLOps within their organization.

By the end of this training, participants will be able to:

- Install and configure various MLOps frameworks and tools.
- Assemble the right kind of team with the right skills for constructing and supporting an MLOps system.
- Prepare, validate and version data for use by ML models.
- Understand the components of an ML Pipeline and the tools needed to build one.
- Experiment with different machine learning frameworks and servers for deploying to production.
- Operationalize the entire Machine Learning process so that it's reproduceable and maintainable.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
выходные Artificial Intelligence (AI) курсы, курсы Artificial Intelligence (AI) выходного дня, вечерние Artificial Intelligence (AI) курсы, Artificial Intelligence (AI) технические учебные курсы, Artificial Intelligence (AI) буткемп, Artificial Intelligence (AI) буткэмп, Artificial Intelligence (AI) курсы с инструктором, Artificial Intelligence (AI) тренинг с инструктором, выходной Artificial Intelligence (AI) тренинг, тренинг Artificial Intelligence (AI) выходного дня, вечерние Artificial Intelligence (AI) курсы, Artificial Intelligence (AI) коачинг, Artificial Intelligence (AI) тренерство, Artificial Intelligence (AI) тренинг, Artificial Intelligence (AI) инструктор, Artificial Intelligence (AI) тренер, Artificial Intelligence (AI) коач, Artificial Intelligence (AI) курсы, Artificial Intelligence (AI) занятия, Artificial Intelligence (AI) локальные, Artificial Intelligence (AI) частные занятия, Artificial Intelligence (AI) частные курсы, Artificial Intelligence (AI) индивидуальный тренинг, Artificial Intelligence (AI) индивидуальные занятия

Скидки

В настоящее время акции не проводятся

Информационная рассылка

Мы уважаем конфиденциальность Ваших персональных данных. Мы обязуемся не передавать Ваши данные третьим лицам. Вы всегда можете изменить свои настройки конфиденциальности или полностью отказаться от подписки.

Наши клиенты

is growing fast!

We are looking for a good mixture of IT and soft skills in Russia!

As a NobleProg Trainer you will be responsible for:

  • delivering training and consultancy Worldwide
  • preparing training materials
  • creating new courses outlines
  • delivering consultancy
  • quality management

At the moment we are focusing on the following areas:

  • Statistic, Forecasting, Big Data Analysis, Data Mining, Evolution Alogrithm, Natural Language Processing, Machine Learning (recommender system, neural networks .etc...)
  • SOA, BPM, BPMN
  • Hibernate/Spring, Scala, Spark, jBPM, Drools
  • R, Python
  • Mobile Development (iOS, Android)
  • LAMP, Drupal, Mediawiki, Symfony, MEAN, jQuery
  • You need to have patience and ability to explain to non-technical people

To apply, please create your trainer-profile by going to the link below:

Apply now!

This site in other countries/regions