
Местные обучаемые курсы Cloud Computing, продемонстрированные на практике, демонстрируют практическую практику практических навыков использования облачных вычислений и способы использования облачных вычислений Обучение облачным вычислениям доступно как «живое обучение на месте» или «дистанционное живое обучение» На месте живое обучение может проводиться локально в помещениях клиента в Russia или в корпоративных учебных центрах NobleProg Russia , Дистанционное обучение в реальном времени осуществляется с помощью интерактивного удаленного рабочего стола NobleProg Ваш местный провайдер обучения.
Machine Translated
Отзывы
Лекция по шкале облачных вычислений.
Dolby Poland Sp. z o.o.
Курсы: Cloud Computing Overview
Machine Translated
контакт с лектором, хорошая материальная подготовка, опыт
Marcin Terlecki
Курсы: OpenStack Overview
Machine Translated
Практические знания / опыт преподавателя.
Cezary Żeszczyński
Курсы: OpenStack Overview
Machine Translated
Габриэль был очень организован и подготовлен к этому обучению. Он ответил на все вопросы и разъяснил концепции и архитектуру AWS. Отличная работа, Габриэль. ,
Mircea Turcu
Курсы: AWS Architect Certification
Machine Translated
Опыт тестирования кластера realworld был хорошим, и было интересно узнать о реальных опытах Renato в работе OpenStack.
UKRI - UK Shared Business Services Ltd
Курсы: OpenStack Administration - Basic + Intermediate (Certified System Administrator for OpenStack)
Machine Translated
Взаимодействие с тренером.
UKRI - UK Shared Business Services Ltd
Курсы: OpenStack Administration - Basic + Intermediate (Certified System Administrator for OpenStack)
Machine Translated
Практические упражнения
王 朝晖 - 是德科技
Курсы: OpenStack Administration - Basic + Intermediate
Machine Translated
Спокойствие и самообладание лектора и огромные знания, переданные в простой и простой форме, подкрепленные практическими примерами. Один из лучших тренингов, в которых я принимал участие.
Tomasz Czajka - Unit4 Polska sp. z o.o.
Курсы: Introduction to Azure
Machine Translated
Знания инструктора удивительно, а также ясность в объяснениях.
CARGLASS, S.L.
Курсы: AWS Architect Certification
Machine Translated
Большие знания тренера, приверженность, супер поток!
Fujitsu Technology Solutions Sp. z o.o.
Курсы: Hyperledger Fabric for Beginners
Machine Translated
Знания тренера, он был в состоянии ответить на каждый вопрос.
Fujitsu Technology Solutions Sp. z o.o.
Курсы: Hyperledger Fabric for Beginners
Machine Translated
Много знаний тренера. Платформа с виртуальными машинами работала удивительно хорошо.
Fujitsu Technology Solutions Sp. z o.o.
Курсы: Hyperledger Fabric for Beginners
Machine Translated
Эффективная управляемость, легкая связь с тренером, конкретные ответы.
HUAWEI Polska Sp. z o.o.
Курсы: OpenStack Administration
Machine Translated
Очень профессиональная подготовка - я бы ничего не изменил. Одна лучшая подготовка, в которой я участвовала
Rafał Babij - Unit4 Business Software Holding B.V.
Курсы: Kubernetes on Azure (AKS)
Machine Translated
Все, что было теоретическое введение, а затем охват на примере. Мне понравилось, что, как ведущий не знал что-то (например, ответ на вопрос), он сказал, что он не знал, но будет проверить в перерыве и вернется к этому. Больше всего мне понравился пример с использованием SNS, Lambd, Dynamo, EC2 и API Gateaway - конкретного приложения и интеграции сервисов между собой.
Marcel Kończyk - NetworkedAssets Sp. z o.o.
Курсы: AWS CloudFormation
Machine Translated
Тренер хорош - готов поделиться, задать вопросы и ответить на вопросы. Тренер из первых рук делится на различные типы IoT, различные приложения (например, в durians), демонстрационные части.
Makers' Academy
Курсы: Industrial Training IoT (Internet of Things) with Raspberry PI and AWS IoT Core 「4 Hours Remote」
Machine Translated
Практические примеры анализа повреждений.
Orange Szkolenia Sp. z o.o.
Курсы: OpenStack Bootcamp
Machine Translated
лабораторные упражнения
Global Knowledge Network Training Limited
Курсы: Terraform for Managing Cloud Infrastructure
Machine Translated
все хорошо, ничего, чтобы улучшить
Ievgen Vinchyk - GE Medical Systems Polska Sp. Z O.O.
Курсы: AWS Lambda for Developers
Machine Translated
Cloud Computing Содержание курса
This instructor-led, live training (online or onsite) is aimed at developers who wish to integrate AWS Lambda functions with services such as API Gateway, Kinesis Streams, etc. The training also demonstrates how to use the browser-based AWS Cloud9 IDE to develop software collaboratively.
By the end of this training, participants will be able to:
- Collaboratively develop applications and services using AWS Cloud9 IDE.
- Integrate AWS Lambda functions with other AWS services.
- Create and manage APIs.
- Set up an AWS Lambda function to read and process real-time streaming data.
- Create and manage a continuous integration pipeline for building, testing and deploying a AWS Lambda application.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
In this instructor-led, live training, participants will learn how to set up and manage a production-scale container environment using Kubernetes on AKS.
By the end of this training, participants will be able to:
- Configure and manage Kubernetes on AKS
- Deploy, manage and scale a Kubernetes cluster
- Deploy containerized (Docker) applications on Azure
- Migrate an existing Kubernetes environment from on-premise to AKS cloud
- Integrate Kubernetes with third-party continuous integration (CI) software
- Ensure high availability and disaster recovery in Kubernetes
Audience
- Developers
- System Administrators
- DevOps Engineers
Format of the Course
- Part lecture, part discussion, exercises and heavy hands-on practice in a live-lab environment.
Note
- To request a customized training for this course, please contact us to arrange.
Это интерактивное обучение под руководством инструктора (локальное или дистанционное) предназначено для разработчиков программного обеспечения, которые хотят разрабатывать параллельные приложения с использованием OpenMP.
К концу этого тренинга участники смогут:
- Понимать и использовать параллельное программирование с Fortran в OpenMP.
- Вычислять фракталы параллельно, чтобы отобразить несколько пикселей и символов.
- Внедрить векторное программирование с помощью SIMD-расширений для систем HPC.
- Добавьте параллельные блоки для указания параллелизма разделяемой памяти.
Формат курса
- Интерактивная лекция и обсуждение.
- Много упражнений и практики.
- Практическая реализация в среде живых лабораторий.
Параметры настройки курса
- Чтобы заказать индивидуальное обучение для этого курса, пожалуйста, свяжитесь с нами, чтобы договориться.
By the end of this training, participants will be able to:
- Install and configure OpenFaas.
- Package any binary or code as a serverless function without repetitive boiler-plate coding.
- Decouple from AWS Lambda to avoid lock-in.
- Deploy event-driven functions to an on-premise server or to the cloud.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
- To learn more about OpenFaas, please visit: https://www.openfaas.com/
This instructor-led, live training (online or onsite) is aimed at data scientists who wish to use Azure Machine Learning and Azure DevOps to facilitate MLOps practices.
By the end of this training, participants will be able to:
- Build reproducible workflows and machine learning models.
- Manage the machine learning lifecycle.
- Track and report model version history, assets, and more.
- Deploy production ready machine learning models anywhere.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Это обучение под руководством инструктора (на месте или удаленное) предназначено для облачных инженеров, которые хотят хранить объекты и неструктурированные данные с помощью MinIO.
К концу обучения участники смогут:
- Предоставьте альтернативу командам Unix с клиентом MinIO.
- Используйте MinIO для создания высокопроизводительных инфраструктур для машинного обучения, аналитики и многое другое.
- Развертывание MinIO на Kubernetes для организованного развертывания в масштабе.
Формат курса
- Интерактивная лекция и дискуссия.
- Много упражнений и практики.
- Практическая реализация в условиях живой лаборатории.
Параметры настройки курса
- Чтобы запросить индивидуальное обучение для этого курса, пожалуйста, свяжитесь с нами, чтобы организовать.
In this instructor-led, live training, participants will learn how to set up and manage a production-scale container environment using Kubernetes on EKS.
By the end of this training, participants will be able to:
- Configure and manage Kubernetes on EKS
- Migrate an existing Kubernetes environment from on-premise to AWS cloud
- Integrate Kubernetes with third-party continuous integration (CI) software
- Ensure high availability and disaster recovery in Kubernetes
- Understand and adopt the tools available to efficiently manage EKS
Audience
- Developers
- System Administrators
- DevOps Engineers
Format of the Course
- Part lecture, part discussion, exercises and heavy hands-on practice in a live-lab environment.
Note
- To request a customized training for this course, please contact us to arrange.
By the end of this training, participants will be able to:
- Install and configure OpenWhisk.
- Use OpenWhisk to enable writing "code as a function".
- Understand how OpenWhisk orchestrates functions on Kubernetes.
- Decouple from AWS Lambda to avoid lock in and improves flexibility.
- Deploy event-driven functions to an on-premise server or to the cloud.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- OpenWhisk supports a number of languages, including: Go, Java, JavaScript, PHP, Python, Ruby, Swift, etc. To request a specific language for the course, please contact us to arrange.
- To request a customized training for this course, please contact us to arrange.
- To learn more about OpenWhisk, please visit: http://openwhisk.incubator.apache.org/
By the end of this training, participants will be able to:
- Install and configure Kubeless.
- Turn Kubernetes into a function execution machine, without the need for add-ons such as a messaging bus.
- Comfortably manage functions as standard Kubernetes objects.
- Troubleshoot deployments using existing logging and monitoring setup and skills.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
- To learn more about Kubeless, please visit: https://kubeless.io/
This instructor-led, live training (online or onsite) is aimed at engineers who wish to deploy Machine Learning workloads to Azure cloud.
By the end of this training, participants will be able to:
- Install and configure Kubernetes, Kubeflow and other needed software on Azure.
- Use Azure Kubernetes Service (AKS) to simplify the work of initializing a Kubernetes cluster on Azure.
- Create and deploy a Kubernetes pipeline for automating and managing ML models in production.
- Train and deploy TensorFlow ML models across multiple GPUs and machines running in parallel.
- Leverage other AWS managed services to extend an ML application.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
This instructor-led, live training (online or onsite) is aimed at engineers who wish to deploy Machine Learning workloads to an AWS EC2 server.
By the end of this training, participants will be able to:
- Install and configure Kubernetes, Kubeflow and other needed software on AWS.
- Use EKS (Elastic Kubernetes Service) to simplify the work of initializing a Kubernetes cluster on AWS.
- Create and deploy a Kubernetes pipeline for automating and managing ML models in production.
- Train and deploy TensorFlow ML models across multiple GPUs and machines running in parallel.
- Leverage other AWS managed services to extend an ML application.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
By the end of this training, participants will be able to:
- Install and configure Knative on-premise.
- Deploy and run serverless functions and applications that autoscale.
- Integrate Knative with continuous integration systems to enable an end-to-end development workflow.
- Simplify the overhead of deploying containers; focus on writing great code.
Format of the course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- This course is aimed at on-promise installations of Knative. To use a Knative service provided by a cloud providers, contact us to arrange.
- To request a customized training for this course, please contact us to arrange.
- To learn more about Knative, please visit: https://cloud.google.com/knative/
- Основы архитектуры и функций IoT
- "Вещи", "Сенсоры", Интернет и отображение между бизнес-функциями IoT
- Существенное из всех компонентов программного обеспечения IoT - аппаратное обеспечение, прошивка, промежуточное программное обеспечение, облако и мобильное приложение
- IoT функции- Менеджер флота, визуализация данных, SaaS на основе FM и DV, оповещения / тревоги, датчик на борту, "вещь" на борту, гео-ограждение
- Основы связи устройств IoT с облаком с МЗТТ.
- Подключение устройств IoT к AWS с помощью МЗТТ (AWS IoT Core).
- Подключение AWS IoT ядра с AWS Lambda функцией для вычислений и хранения данных с помощью DynamoDB.
- Подключение Raspberry PI с AWS IoT ядром и простой передачи данных.
- Руки на с Малина PI и AWS IoT Core для создания смарт-устройства.
- Сенсорная визуализация данных и коммуникация с веб-интерфейсом.
This instructor-led, live training (online or onsite) is aimed at engineers, architects and managers who wish to deploy an OpenStack cloud to manage their Telecom infrastructure.
By the end of this training, participants will be able to:
- Plan, deploy, and administer OpenStack as a private cloud.
- Understand IaaS architecture and its implementation under OpenStack.
- Replace physical routers and servers with virtual machines running in a private cloud.
- Reduce infrastructure and maintenance costs through virtualization and cloud computing.
- Expedite the rollout of new services to customers.
Format of the course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
In this instructor-led, live training, participants will learn how to set up and manage a production-scale container environment using Kubernetes on Google Cloud.
By the end of this training, participants will be able to:
- Configure and manage Kubernetes on Google Cloud.
- Deploy, manage and scale a Kubernetes cluster.
- Deploy containerized (Docker) applications on Google Cloud.
- Migrate an existing Kubernetes environment from on-premise to Google Cloud.
- Integrate Kubernetes with third-party continuous integration (CI) software.
- Ensure high availability and disaster recovery in Kubernetes.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- Different Docker images can be used as demos in this training (e.g., Nginx, MongoDB, Tomcat, etc.).
- To request specific images or any other customization for this training, please contact us to arrange.
This instructor-led, live training (online or onsite) is aimed at engineers who wish to deploy software applications to any of a number of environments, from traditional infrastructure, to Kubernetes clusters or serverless functions.
By the end of this training, participants will be able to:
- Install and configure Pulumi.
- Declare cloud infrastructure using programming languages.
- Use Pulumi to deploy software using VMs, networks, and databases, as well as Kubernetes clusters and serverless functions.
- Deploy software to public, private, and hybrid cloud service infrastructures.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
This instructor-led, live training (online or onsite) is aimed at engineers who wish to use Terraform on GCP to plan and build cloud infrastructure.
By the end of this training, participants will be able to:
- Install and configure Terraform on GCP.
- Implement an "infrastructure as code" approach to managing private and public cloud environments.
- Create, launch, and dismantle infrastructure from within a single tool.
- Write declarative configuration files that can be managed like any other source code in a version control system.
- Quickly update configuration files for effectively responding to changing compute resource requirements.
- Collaborate with other infrastructure engineers by sharing configuration files in a common code repository.
- Improve transparency in the infrastructure procurement process.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
This instructor-led, live training (online or onsite) is aimed at engineers who wish to use Terraform on AWS to plan and build cloud infrastructure.
By the end of this training, participants will be able to:
- Install and configure Terraform on AWS.
- Implement an "infrastructure as code" approach to managing AWS cloud environments.
- Create, launch, and dismantle infrastructure from within a single tool.
- Write declarative configuration files that can be managed like any other source code in a version control system.
- Quickly update configuration files for effectively responding to changing compute resource needs.
- Collaborate with other infrastructure engineers by sharing configuration files in a common code repository.
- Improve transparency in the infrastructure procurement process.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
This instructor-led, live training (online or onsite) is aimed at engineers with little or no previous experience managing infrastructure. Terraform will be used to automate the setup and deployment of infrastructure.
By the end of this training, participants will be able to:
- Install and configure Terraform.
- Understand the principles of infrastructure as code.
- Set up and automate infrastructure using Terraform.
- Write and share configuration file with team members.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
- To learn more about Terraform, please visit: https://github.com/hashicorp/terraform
By the end of this training, participants will be able to:
- Install and configure Terraform.
- Implement an "infrastructure as code" approach to managing private and public cloud environments.
- Write declarative configuration files for more efficient change management and collaboration.
- Improve transparency in the infrastructure procurement process.
- Create, launch, and remove resources across different infrastructure providers (AWS, GCP, Azure, OpenStack, VMware, etc.) from within a single tool.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
- To learn more about Terraform, please visit: https://www.terraform.io/
This instructor-led, live training (online or onsite) is aimed at developers and DevOps engineers who wish to utilize a serverless approach for building enterprise applications in Kubernetes.
By the end of this training, participants will be able to:
- Setup and configure the Kubernetes system to start developing with a serverless architecture.
- Understand the concepts and principles foundational to serverless environments.
- Operate toolchains necessary to serverless development and integrate it with Kubernetes components.
- Practice their skill in Python programming language and apply it to implement serverless systems.
- Secure enterprise applications that are deployed through a serverless framework on Kubernetes.
- Utilize modern cloud computing methods in optimizing DevOps task processing workflows.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
This instructor-led, live training (online or onsite) is aimed at developers who wish to use Serverless Framework on AWS and other cloud platforms to create and deploy microservice applications.
By the end of this training, participants will be able to:
- Set up Serverless Framework to work with compute services such as AWS Lambda.
- Reduce the complexity and cost of deploying microservices on different cloud platforms.
- Emit and capture events and execute functions automatically.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- Sample applications and functions can written in a number of languages (Python, Java, Scala, C#, etc.), please contact us to request your preference.
- To request a customized training for this course, please contact us to arrange.
- To learn more about Serverless Framework, please visit: https://github.com/serverless/serverless
This instructor-led, live training (online or onsite) is aimed at engineers who wish to understand and deploy a Red Hat Ceph Storage cluster.
By the end of this training, participants will be able to:
- Install and configure Red Hat Ceph Storage.
- Deploy and manage a Red Hat Ceph Storage cluster.
- Tune Red Hat Ceph Storage for performance.
- Integrate Red Hat Ceph Storage with OpenStack.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
- To learn more about Red Hat Open Ceph, please visit: https://www.redhat.com/en/technologies/storage/ceph