Курсы Deep Learning

Курсы Deep Learning

Местные учебные курсы с глубоким обучением (DL), организованные преподавателями, демонстрируют посредством практических практик основы и применения Deep Learning и охватывают такие темы, как глубокое машинное обучение, глубокое структурированное обучение и иерархическое обучение Обучение глубокому обучению доступно как «живое обучение на месте» или «дистанционное живое обучение» На месте живое обучение может проводиться локально в помещениях клиента в Russia или в корпоративных учебных центрах NobleProg Russia , Дистанционное обучение в реальном времени осуществляется с помощью интерактивного удаленного рабочего стола NobleProg Ваш местный провайдер обучения.

Machine Translated

Отзывы

★★★★★
★★★★★

Deep Learning Содержание курса

Название курса
Продолжительность
Обзор
Название курса
Продолжительность
Обзор
14 часов
Обзор
Этот курс охватывает ИИ (подчеркивание машинного обучения и глубокого обучения) в автомобильной промышленности Это помогает определить, какая технология может (потенциально) использоваться во множестве ситуаций в автомобиле: от простой автоматизации, распознавания образов до автономного принятия решений ,.
14 часов
Обзор
TensorFlow.js is a JavaScript framework for machine learning. TensorFlow.js enables users to build and train machine learning models directly in JavaScript.

This instructor-led, live training (online or onsite) is aimed at data scientists who wish to use TensorFlow.js to identify patterns and generate predictions through machine learning models.

By the end of this training, participants will be able to:

- Build and train machine learning models with TensorFlow.js.
- Run machine learning models in the browser or under Node.js.
- Retrain pre-existing machine learning models using custom data.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
14 часов
Обзор
Эта учебная сессия, основанная на классе, будет содержать презентации и компьютерные примеры и упражнения для изучения конкретных ситуаций с соответствующими нейронными и глубокими сетевыми библиотеками ,.
14 часов
Обзор
OpenCV is a library of programming functions for deciphering images with computer algorithms. OpenCV 4 is the latest OpenCV release and it provides optimized modularity, updated algorithms, and more. With OpenCV 4 and Python, users will be able to view, load, and classify images and videos for advanced image recognition.

This instructor-led, live training (online or onsite) is aimed at software engineers who wish to program in Python with OpenCV 4 for deep learning.

By the end of this training, participants will be able to:

- View, load, and classify images and videos using OpenCV 4.
- Implement deep learning in OpenCV 4 with TensorFlow and Keras.
- Run deep learning models and generate impactful reports from images and videos.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
14 часов
Обзор
OpenFace - это основанный на Python и Torch open-source, программное обеспечение для распознавания лиц в реальном времени на основе исследования FaceNet компании Google В этом обученном, живом обучении участники узнают, как использовать компоненты OpenFace для создания и развертывания образца приложения распознавания лиц К концу этого тренинга участники смогут: Работа с компонентами OpenFace, включая dlib, OpenVC, Torch и nn4 для реализации распознавания лиц, выравнивания и преобразования Применяйте OpenFace к приложениям реального мира, таким как наблюдение, проверка подлинности, виртуальная реальность, игры и идентификация постоянных клиентов и т Д Аудитория Разработчики Ученые данных Формат курса Часть лекций, обсуждение частей, упражнения и тяжелая практика handson ,.
7 часов
Обзор
OpenNMT - полнофункциональная, с открытым исходным кодом (MIT) система нейронного перевода, которая использует математический инструментарий Torch В этом упражнении участники узнают, как настроить и использовать OpenNMT для перевода различных наборов данных выборки Курс начинается с обзора нейронных сетей применительно к машинным переводам Участники будут проводить живые упражнения на протяжении всего курса, чтобы продемонстрировать свое понимание понятий и получить отзывы от инструктора К концу этого обучения участники получат знания и практику, необходимые для реализации живого решения OpenNMT Исходные и целевые языковые образцы будут заранее согласованы с требованиями аудитории Аудитория Специалисты по локализации с технической базой Глобальные менеджеры контента Инженеры по локализации Разработчики программного обеспечения, отвечающие за внедрение глобальных решений для контента Формат курса Лекция по части, часть обсуждения, тяжелая практика handson ,.
14 часов
Обзор
OpenNN - это библиотека классов openource, написанная на C ++, которая реализует нейронные сети, для использования в машинных процессах В этом курсе мы рассмотрим принципы нейронных сетей и используем OpenNN для реализации примера приложения Аудитория Разработчики программного обеспечения и программисты, желающие создавать приложения Deep Learning Формат курса Лекция и обсуждение в сочетании с упражнениями handson ,.
21 часов
Обзор
PaddlePaddle (PArallel Distributed Deep LEarning) - это масштабируемая платформа глубокого обучения, разработанная Baidu В этом обученном, живом обучении участники узнают, как использовать PaddlePaddle, чтобы обеспечить глубокое обучение в своих продуктах и ​​приложениях К концу этого тренинга участники смогут: Настройка и настройка PaddlePaddle Настройте сверточную нейронную сеть (CNN) для распознавания изображений и обнаружения объектов Настройте повторяющуюся нейронную сеть (RNN) для анализа настроений Настройте глубокое обучение в системах рекомендаций, чтобы помочь пользователям найти ответы Прогнозировать рейтинг кликов (CTR), классифицировать наборы изображений большого масштаба, выполнять оптическое распознавание символов (OCR), поиск рангов, обнаруживать компьютерные вирусы и внедрять систему рекомендаций Аудитория Разработчики Ученые данных Формат курса Часть лекций, обсуждение частей, упражнения и тяжелая практика handson ,.
21 часов
Обзор
В этом обученном, живом обучении участники будут изучать наиболее актуальные и передовые методы машинного обучения в Python, поскольку они создают серию демонстрационных приложений, включающих изображения, музыку, текст и финансовые данные К концу этого тренинга участники смогут: Реализация алгоритмов машинного обучения и методов решения сложных задач Применять глубокое обучение и полунаблюдение в приложениях, включающих изображения, музыку, текст и финансовые данные Push Python алгоритмы с максимальным потенциалом Используйте библиотеки и пакеты, такие как NumPy и Theano Аудитория Разработчики Аналитики Ученые данных Формат курса Часть лекций, обсуждение частей, упражнения и тяжелая практика handson ,.
21 часов
Обзор
В этом обученном, живом обучении участники будут изучать передовые методы машинного обучения с помощью R, поскольку они проходят через создание приложения realworld К концу этого тренинга участники смогут: Использовать методы в качестве настройки гиперпараметра и глубокого обучения Понимать и внедрять неконтролируемые методы обучения Поместите модель в производство для использования в более крупном приложении Аудитория Разработчики Аналитики Ученые данных Формат курса Часть лекций, обсуждение частей, упражнения и тяжелая практика handson ,.
21 часов
Обзор
Deep learning is a subfield of machine learning. It uses methods based on learning data representations and structures such as neural networks.

Keras is a high-level neural networks API for fast development and experimentation. It runs on top of TensorFlow, CNTK, or Theano.

This instructor-led, live training (online or onsite) is aimed at developers who wish to build a self-driving car (autonomous vehicle) using deep learning techniques.

By the end of this training, participants will be able to:

- Use computer vision techniques to identify lanes.
- Use Keras to build and train convolutional neural networks.
- Train a deep learning model to differentiate traffic signs.
- Simulate a fully autonomous car.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
21 часов
Обзор
SINGA - это общая распределенная платформа глубокого обучения для обучения большим глубоким учебным моделям по большим наборам данных Он разработан с интуитивно понятной моделью программирования, основанной на абстракции слоя Поддерживаются разнообразные популярные модели глубокого обучения, а именно модели с форсированием, включая сверточные нейронные сети (CNN), энергетические модели, такие как ограниченная машина Больцмана (RBM) и рекуррентные нейронные сети (RNN) Множество встроенных слоев предоставляется пользователям Архитектура SINGA достаточно гибкая, чтобы запускать синхронные, асинхронные и гибридные схемы обучения SINGA также поддерживает различные схемы разделения нейронной сети для параллелизации обучения крупным моделям, а именно разбиения на размер партии, размерность элемента или гибридное разбиение Аудитория Этот курс направлен на исследователей, инженеров и разработчиков, стремящихся использовать Apache SINGA в качестве основы глубокого обучения По завершении этого курса делегаты: понять структуру и механизмы развертывания SINGA иметь возможность выполнять задачи установки и производства / архитектуры и конфигурации иметь возможность оценивать качество кода, выполнять отладку, мониторинг иметь возможность внедрять передовые технологии производства, такие как модели обучения, условия внедрения, построения графиков и ведения журнала ,.
7 часов
Обзор
Tensor2Tensor (T2T) - это модульная расширяемая библиотека для обучения AI-моделям в разных задачах с использованием разных типов данных обучения, например: распознавание изображений, перевод, разбор, субтитры изображений и распознавание речи Он поддерживается командой Google Brain В этом обученном, живом обучении участники узнают, как подготовить модель deeplayning для решения нескольких задач К концу этого тренинга участники смогут: Установите тензор2 тензор, выберите набор данных и поезда и оцените модель ИИ Настроить среду разработки с помощью инструментов и компонентов, включенных в Tensor2Tensor Создайте и используйте одну модель для одновременного изучения ряда задач из нескольких доменов Используйте модель, чтобы учиться на задачах с большим количеством данных обучения и применять эти знания к задачам, где данные ограничены Получите удовлетворительные результаты обработки с использованием одного графического процессора Аудитория Разработчики Ученые данных Формат курса Часть лекций, обсуждение частей, упражнения и тяжелая практика handson ,.
21 часов
Обзор
TensorFlow is a popular and machine learning library developed by Google for deep learning, numeric computation, and large-scale machine learning. TensorFlow 2.0, released in Jan 2019, is the newest version of TensorFlow and includes improvements in eager execution, compatibility and API consistency.

This instructor-led, live training (online or onsite) is aimed at developers and data scientists who wish to use Tensorflow 2.0 to build predictors, classifiers, generative models, neural networks and so on.

By the end of this training, participants will be able to:

- Install and configure TensorFlow 2.0.
- Understand the benefits of TensorFlow 2.0 over previous versions.
- Build deep learning models.
- Implement an advanced image classifier.
- Deploy a deep learning model to the cloud, mobile and IoT devices.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
- To learn more about TensorFlow, please visit: https://www.tensorflow.org/
21 часов
Обзор
TensorFlow Lite is an open source deep learning framework for executing models on mobile and embedded devices with limited compute and memory resources.

This instructor-led, live training (online or onsite) is aimed at developers who wish to use TensorFlow Lite to deploy deep learning models on embedded devices.

By the end of this training, participants will be able to:

- Install and configure Tensorflow Lite on an embedded device.
- Understand the concepts and components underlying TensorFlow Lite.
- Convert existing machine learning models to TensorFlow Lite format for execution on embedded devices.
- Work within the limitations of small devices and TensorFlow Lite, while learning how to expand their default capabilities.
- Deploy deep learning models on embedded devices running Linux to solve physical world problems such as recognizing images and voice, predicting patterns, and initiating movements and responses from robots and other embedded systems in the field.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
21 часов
Обзор
MXNet is a flexible, open-source Deep Learning library that is popular for research prototyping and production. Together with the high-level Gluon API interface, Apache MXNet is a powerful alternative to TensorFlow and PyTorch.

This instructor-led, live training (online or onsite) is aimed at data scientists who wish to use Apache MXNet to build and deploy a deep learning model for image recognition.

By the end of this training, participants will be able to:

- Install and configure Apache MXNet and its components.
- Understand MXNet's architecture and data structures.
- Use Apache MXNet's low-level and high-level APIs to efficiently build neural networks.
- Build a convolutional neural network for image classification.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
21 часов
Обзор
TensorFlow Lite is an open source deep learning framework for mobile devices and embedded systems.

This instructor-led, live training (online or onsite) is aimed at developers who wish to use TensorFlow Lite to develop mobile applications with deep learning capabilities.

By the end of this training, participants will be able to:

- Install and configure TensorFlow Lite.
- Understand the principles behind TensorFlow, machine learning and deep learning.
- Load TensorFlow Models onto an Android device.
- Enable deep learning and machine learning functionality such as computer vision and natural language recognition in a mobile application.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
- To learn more about TensorFlow, please visit: https://www.tensorflow.org/lite/
21 часов
Обзор
TensorFlow Lite is an open source deep learning framework for mobile devices and embedded systems.

This instructor-led, live training (online or onsite) is aimed at developers who wish to use TensorFlow Lite to develop iOS mobile applications with deep learning capabilities.

By the end of this training, participants will be able to:

- Install and configure TensorFlow Lite.
- Understand the principles behind TensorFlow and machine learning on mobile devices.
- Load TensorFlow Models onto an iOS device.
- Run an iOS application capable of detecting and classifying an object captured through the device's camera.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
21 часов
Обзор
TensorFlow Lite for Microcontrollers is a port of TensorFlow Lite designed to run machine learning models on microcontrollers and other devices with limited memory.

This instructor-led, live training (online or onsite) is aimed at engineers who wish to write, load and run machine learning models on very small embedded devices.

By the end of this training, participants will be able to:

- Install TensorFlow Lite.
- Load machine learning models onto an embedded device to enable it to detect speech, classify images, etc.
- Add AI to hardware devices without relying on network connectivity.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
7 часов
Обзор
TensorFlow Serving — это система обслуживания моделей машинного обучения (ML) для производства.

В этом инструктора под руководством, живой подготовки, участники узнают, как настроить и использовать TensorFlow обслуживание для развертывания и управления ML моделей в производственной среде.

К концу обучения участники смогут:

- Поезд, экспорт и обслуживание различных моделей TensorFlow
- Тестирование и развертывание алгоритмов с использованием единой архитектуры и набора AAP
- Расширить TensorFlow обслуживание для обслуживания других типов моделей, помимо TensorFlow моделей

Формат курса

- Часть лекции, часть обсуждения, упражнения и тяжелые практические практики

Параметры настройки курса

- Чтобы запросить индивидуальное обучение для этого курса, пожалуйста, свяжитесь с нами, чтобы организовать.
21 часов
Обзор
TensorFlow - это API второго поколения библиотеки программного обеспечения с открытым исходным кодом Google для глубокого обучения Система предназначена для содействия исследованиям в машинном обучении и позволяет быстро и легко перейти от прототипа исследования к производственной системе Аудитория Этот курс предназначен для инженеров, которые хотят использовать TensorFlow для своих проектов Deep Learning По завершении этого курса делегаты: понимать структуру и механизмы развертывания TensorFlow иметь возможность выполнять задачи установки и производства / архитектуры и конфигурации иметь возможность оценивать качество кода, выполнять отладку, мониторинг иметь возможность внедрять современное производство, например, модели обучения, строить графики и вести журнал ,.
28 часов
Обзор
Этот курс исследует, с конкретными примерами, применение Tensor Flow для целей распознавания изображений Аудитория Этот курс предназначен для инженеров, стремящихся использовать TensorFlow для целей распознавания изображений По завершении этого курса делегаты смогут: понимать структуру и механизмы развертывания TensorFlow выполнять задачи установки и производства / архитектуры и конфигурации оценивать качество кода, выполнять отладку, мониторинг внедрять передовое производство, например, модели обучения, строить графики и вести журнал ,.
21 часов
Обзор
TensorFlow Extended (TFX) is an end-to-end platform for deploying production ML pipelines.

This instructor-led, live training (online or onsite) is aimed at data scientists who wish to go from training a single ML model to deploying many ML models to production.

By the end of this training, participants will be able to:

- Install and configure TFX and supporting third-party tools.
- Use TFX to create and manage a complete ML production pipeline.
- Work with TFX components to carry out modeling, training, serving inference, and managing deployments.
- Deploy machine learning features to web applications, mobile applications, IoT devices and more.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
21 часов
Обзор
Факел - это библиотека обучения с открытым исходным кодом и научная вычислительная среда, основанная на языке программирования Lua Он обеспечивает среду разработки для численного моделирования, машинного обучения и компьютерного видения с особым акцентом на глубокое обучение и сверточные сети Это одна из самых быстрых и гибких систем для машинного и глубокого обучения и используется такими компаниями, как Facebook, Google, Twitter, NVIDIA, AMD, Intel и многие другие В этом курсе мы рассмотрим принципы Torch, его уникальные возможности и способы их применения в приложениях realworld Мы проводим множество упражнений на все руки, демонстрируя и практикуя понятые понятия По окончании курса участники будут иметь полное понимание основных функций и возможностей Torch, а также его роли и вклада в пространство AI по сравнению с другими структурами и библиотеками Участники также получат необходимую практику для реализации Факела в своих собственных проектах Аудитория Разработчики программного обеспечения и программисты, желающие включить Machine и Deep Learning в свои приложения Формат курса Обзор машины и глубокого обучения Внеклассные программы кодирования и интеграции Тестовые вопросы посыпаются по пути, чтобы проверить понимание ,.
7 часов
Обзор
Модуль обработки тензодаций (TPU) - это архитектура, которую Google использовал в течение нескольких лет внутри компании, и теперь она становится доступной для использования широкой публикой Он включает в себя несколько оптимизаций, специально предназначенных для использования в нейронных сетях, включая упрощенное матричное умножение и 8-битные целые числа вместо 16 бит, чтобы вернуть соответствующие уровни точности В этом обученном, живом обучении участники узнают, как использовать инновации в процессорах TPU, чтобы максимизировать производительность своих собственных приложений ИИ По окончании обучения участники смогут: Обучать различным типам нейронных сетей на большом количестве данных Используйте TPU для ускорения процесса вывода до двух порядков Используйте TPU для обработки интенсивных приложений, таких как поиск изображений, облачное зрение и фотографии Аудитория Разработчики Исследователи Инженеры Ученые данных Формат курса Часть лекций, обсуждение частей, упражнения и тяжелая практика handson ,.
35 часов
Обзор
TensorFlow ™ - это библиотека программного обеспечения с открытым исходным кодом для численного расчета с использованием графиков потока данных SyntaxNet представляет собой платформу для обработки естественного языка с использованием нейронной сети для TensorFlow Word2Vec используется для изучения векторных представлений слов, называемых «word embeddings» Word2vec - это, в частности, вычислительно-эффективная прогностическая модель для встраивания слов из исходного текста Он поставляется в двух вариантах: модели Continuous BagofWords (CBOW) и модели SkipGram (глава 31 и 32 в Mikolov et al) Используемые в тандеме, SyntaxNet и Word2Vec позволяют пользователям создавать модели Learned Embedding из ввода Natural Language Аудитория Этот курс предназначен для разработчиков и инженеров, которые намерены работать с моделями SyntaxNet и Word2Vec на своих графиках TensorFlow По завершении этого курса делегаты: понимать структуру и механизмы развертывания TensorFlow иметь возможность выполнять задачи установки и производства / архитектуры и конфигурации иметь возможность оценивать качество кода, выполнять отладку, мониторинг иметь возможность внедрять передовые технологии производства, такие как модели обучения, условия внедрения, построения графиков и ведения журнала ,.
35 часов
Обзор
Этот курс начинается с предоставления вам концептуальных знаний в нейронных сетях и, как правило, в алгоритме машинного обучения, глубоком изучении (алгоритмах и приложениях) Часть 1 (40%) этого обучения больше ориентирована на основы, но поможет вам выбрать правильную технологию: TensorFlow, Caffe, Theano, DeepDrive, Keras и т Д Часть 2 (20%) этого тренинга представляет Theano библиотеку python, которая упрощает запись моделей глубокого обучения Часть 3 (40%) обучения будет широко основана на Tensorflow 2-го поколения API-библиотеки открытого программного обеспечения Google для Deep Learning Примеры и handson будут сделаны в TensorFlow Аудитория Этот курс предназначен для инженеров, которые хотят использовать TensorFlow для своих проектов Deep Learning По завершении этого курса делегаты: хорошо разбираются в глубоких нейронных сетях (DNN), CNN и RNN понимать структуру и механизмы развертывания TensorFlow иметь возможность выполнять задачи установки и производства / архитектуры и конфигурации иметь возможность оценивать качество кода, выполнять отладку, мониторинг иметь возможность внедрять современное производство, например, модели обучения, строить графики и вести журнал Не все темы будут освещены в публичном классе продолжительностью 35 часов из-за обширной темы Продолжительность полного курса составит около 70 часов, а не 35 часов ,.
14 часов
Обзор
Video analytics refers to the technology and techniques used to process a video stream. A common application would be capturing and identifying live video events through motion detection, facial recognition, crowd and vehicle counting, etc.

This instructor-led, live training (online or onsite) is aimed at developers who wish to build hardware-accelerated object detection and tracking models to analyze streaming video data.

By the end of this training, participants will be able to:

- Install and configure the necessary development environment, software and libraries to begin developing.
- Build, train, and deploy deep learning models to analyze live video feeds.
- Identify, track, segment and predict different objects within video frames.
- Optimize object detection and tracking models.
- Deploy an intelligent video analytics (IVA) application.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
28 часов
Обзор
Этот курс даст вам знания в нейронных сетях и, как правило, в алгоритме машинного обучения, глубоком изучении (алгоритмах и приложениях) Этот тренинг больше ориентируется на фундаментальные принципы, но поможет вам выбрать правильную технологию: TensorFlow, Caffe, Teano, DeepDrive, Keras и т Д Примеры сделаны в TensorFlow ,.
21 часов
Обзор
Этот курс охватывает ИИ (с акцентом на машинное обучение и глубокое обучение) ,.
выходные Deep Learning курсы, курсы Deep Learning выходного дня, вечерние Deep Learning курсы, Deep Learning технические учебные курсы, Deep Learning буткемп, Deep Learning буткэмп, Deep Learning курсы с инструктором, Deep Learning тренинг с инструктором, выходной Deep Learning тренинг, тренинг Deep Learning выходного дня, вечерние Deep Learning курсы, Deep Learning коачинг, Deep Learning тренерство, Deep Learning тренинг, Deep Learning инструктор, Deep Learning тренер, Deep Learning коач, Deep Learning курсы, Deep Learning занятия, Deep Learning локальные, Deep Learning частные занятия, Deep Learning частные курсы, Deep Learning индивидуальный тренинг, Deep Learning индивидуальные занятия

Скидки

В настоящее время акции не проводятся

Информационная рассылка

Мы уважаем конфиденциальность Ваших персональных данных. Мы обязуемся не передавать Ваши данные третьим лицам. Вы всегда можете изменить свои настройки конфиденциальности или полностью отказаться от подписки.

Наши клиенты

is growing fast!

We are looking for a good mixture of IT and soft skills in Russia!

As a NobleProg Trainer you will be responsible for:

  • delivering training and consultancy Worldwide
  • preparing training materials
  • creating new courses outlines
  • delivering consultancy
  • quality management

At the moment we are focusing on the following areas:

  • Statistic, Forecasting, Big Data Analysis, Data Mining, Evolution Alogrithm, Natural Language Processing, Machine Learning (recommender system, neural networks .etc...)
  • SOA, BPM, BPMN
  • Hibernate/Spring, Scala, Spark, jBPM, Drools
  • R, Python
  • Mobile Development (iOS, Android)
  • LAMP, Drupal, Mediawiki, Symfony, MEAN, jQuery
  • You need to have patience and ability to explain to non-technical people

To apply, please create your trainer-profile by going to the link below:

Apply now!

This site in other countries/regions